首页> 外文OA文献 >Blind image deblurring using class-adapted image priors
【2h】

Blind image deblurring using class-adapted image priors

机译:盲目图像去模糊使用类适应的图像先验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Blind image deblurring (BID) is an ill-posed inverse problem, usuallyaddressed by imposing prior knowledge on the (unknown) image and on theblurring filter. Most of the work on BID has focused on natural images, usingimage priors based on statistical properties of generic natural images.However, in many applications, it is known that the image being recoveredbelongs to some specific class (e.g., text, face, fingerprints), and exploitingthis knowledge allows obtaining more accurate priors. In this work, we proposea method where a Gaussian mixture model (GMM) is used to learn a class-adaptedprior, by training on a dataset of clean images of that class. Experiments showthe competitiveness of the proposed method in terms of restoration quality whendealing with images containing text, faces, or fingerprints. Additionally,experiments show that the proposed method is able to handle text images at highnoise levels, outperforming state-of-the-art methods specifically designed forBID of text images.
机译:盲图像去模糊(BID)是一个不适定的逆问题,通常通过将先验知识强加给(未知)图像和模糊滤波器来解决。 BID的大部分工作都基于自然图像,基于一般自然图像的统计属性使用图像先验。但是,在许多应用中,已知要恢复的图像属于某些特定类别(例如,文本,面部,指纹) ,并且利用这些知识可以获取更准确的先验。在这项工作中,我们提出了一种方法,其中通过训练该类别的干净图像的数据集,使用高斯混合模型(GMM)来学习适应类别的先验。实验表明,该方法在处理包含文本,面部或指纹的图像时,在恢复质量方面具有竞争力。此外,实验表明,所提出的方法能够处理高噪声水平的文本图像,胜过专门为文本图像的BID设计的最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号